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a  b  s  t  r  a  c  t

In  the  present  paper,  a three  factor,  three-level  response  surface  design  based  on  Box–Behnken  design
(BBD)  was developed  for  maximizing  lead  removal  from  aqueous  solution  using  micellar-enhanced  ultra-
filtration  (MEUF).  Due  to extremely  complexity  and  nonlinearity  of membrane  separation  processes,  fuzzy
logic (FL)  models  have  been  driven  to  simulate  MEUF  process  under  a wide  range  of  initial  and  hydro-
dynamic  conditions.  Instead  of  using  mathematical  model,  fuzzy  logic  approach  provides  a  simpler  and
eywords:
odeling

uzzy logic
ox–Behnken design
EUF

easier approach  to describe  the relationships  between  the  processing  variables  and  the  metal  rejection
and  permeation  flux.  Statistical  values,  which  quantify  the  degree  of  agreement  between  experimental
observations  and  numerically  calculated  values,  were  found  greater  than  91%  for  all  cases.  The results
show  that predicted  values  obtained  from  the  fuzzy  model  were  in very  good  agreement  with  the reported
experimental  data.
ead

. Introduction

Widespread use of heavy metals in industrial applications as
ell as discharging this contaminated wastewaters into environ-
ent is a serious problem [1].  Lead is classified as a hazardous
aste and is highly toxic to humans, plants and animals, which

end to be accumulated in the food chain and cause serious health
roblems such as anemia, brain damage, anorexia, vomiting and
alaise [2,3]. Conventional methods of heavy metal-containing
astewater treatment include precipitation [4],  electro-deposition

5], evaporation, ion exchange [6],  and crystallization [7].  How-
ver, industries are looking for competing alternative technologies
hich may  overcome some of the inherent disadvantages of these

ethods [8]. Membrane separation processes of different types

f membranes show great promises for commercial application
9–13]. However, both RO and NF processes use relatively “dense”

Abbreviations: ARE, average relative error; AARE, absolute average relative
rror; SD, standard deviation; MEUF, micellar-enhanced ultrafiltration; CMC, critical
icellar concentration; FL, fuzzy logic; FIS, fuzzy inference system; RSM, response

urface methodology; BBD, Box–Behnken design; MFs, Gaussian membership func-
ions; TMP, transmembrane pressure (bar).
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E-mail addresses: bashir rahmanian@yahoo.com (B. Rahmanian),
akizeh@um.ac.ir (M.  Pakizeh), esfandyari.morteza@stu-mail.um.ac.ir
M.  Esfandyari), Heshmatnezhad82@yahoo.com (F. Heshmatnezhad),

askooki@yahoo.com (A. Maskooki).

304-3894/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2011.05.051
© 2011 Elsevier B.V. All rights reserved.

membranes. Permeability of these membranes is low and thus, to
get the desired throughput, a high operating pressure is required
[14]. Recently, a modified ultrafiltration membrane separation pro-
cess ‘micellar-enhanced ultrafiltration (MEUF)’ has been used for
the removal of various organic and/or inorganic pollutants from
aqueous phase [15–20].

Traditionally, the study of MEUF has been conducted using the
one variable at a time approach, i.e., a single factor is varied while all
other factors are kept unchanged for a particular set of experiments.
Such conventional or classical methods of experimentation usually
involve many experimental runs, which are time consuming, ignore
interactions effects between the considered parameters of the pro-
cess and lead to a low efficiency in optimization issues [21,22]. The
application of statistical experimental design for membrane sys-
tems seems to be the best methodology for process control and
optimization.

This study reports data of a metal-polluted wastewater model
in order to evaluate the efficiency of MEUF for the removal of Pb2+

from aqueous solutions. The factors that have been considered are
operative pressure difference, membrane molecular weight cut-
off, molar ratio of surfactants to the solute, kind of surfactant and
additives, pH, ionic strength, etc. According to the previous pub-
lished research on MEUF, three factors including the surfactant

concentration, solution pH and the surfactant to metal concentra-
tion ratio (S/M) have most significant effect on response variables.
In this research, MEUF process using Box–Behnken as an experi-
mental design was  performed and the ability of FIS was evaluated to

dx.doi.org/10.1016/j.jhazmat.2011.05.051
http://www.sciencedirect.com/science/journal/03043894
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Nomenclature

�f membership function
R filtration efficiency
Cf concentration of Pb2+ (mg/L) in the feed solution

(mM)
Cp concentration of Pb2+ in the permeate stream (mM)
Pi inlet pressure (bar)
Po outlet pressure (bar)
Pp permeate pressure (bar)
Q permeate volume (m3)
A area of membrane (m2)
J permeation flux (L/m2 min)
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X Y and Z linguistic variables

odeling and simulation. It is unnecessary to carry out extensive
ilot plant testing for data collection, which can be interpolated
ith potentially great savings, both in time and in cost by using

his procedure.

.1. Box–Behnken designs (BBD)

Response surface methodology (RSM) is a collection of math-
matical and statistical techniques that can be used for studying
he effects of several factors at different level and their influ-
nce on each other. A further benefit of using the RSM design
s the reduction of number of experiments needed rather than a
ull experimental design at the same level. Another advantage of
SM designs is that it allows the effects of a factor to be esti-
ated at several levels of the other factors studied. In this study,

ox–Behnken designs (BBD) were applied as experimental design
trategies to investigate MEUF process performance. One of the
ain advantages of Box–Behnken design matrix is that it does

ot contain combinations for which all factors are simultane-
usly at their highest or lowest levels. So this design is useful
o avoid experiments performed under extreme conditions [23].
he advantages of Box–Behnken designs include the fact that they
re all spherical designs and require factors to be run at only
hree levels. The designs are also rotatable or nearly rotatable
24].

.2. Fuzzy model

Fuzzy modeling is one of the most powerful techniques to esti-
ate input–output relation in complex nonlinear systems. Zadeh

25] introduced this concept, in which fuzzy numbers are assigned
o variables to represent uncertainties. A fuzzy number describes
he relationship between an uncertain quantity x and a member-
hip function �, which ranges between 0 and 1 [26]. There are
wo types of fuzzy inference systems: Takagi–Sugeno models [27],
nd Mamdani models [28]. The output membership functions of
akagi–Sugeno models are either constant or linear functions of
he input variables, whereas the output membership functions of

amdani models are fuzzy sets, which can incorporate linguistic
nformation into the model. Mamdani models are more suitable
or modeling qualitative information is used in this work [29].
uzzy logic starts with and builds on a set of user-supplied human
anguage rules. The fuzzy systems convert these rules to their math-
matical equivalents. This simplifies the job of the system designer
nd the computer, and results in much more accurate represen-

ations of the way systems behave in the real world. Additional
enefits of fuzzy logic include its simplicity and its flexibility. Fuzzy

ogic can handle problems with imprecise and incomplete data, and
t can model nonlinear functions of arbitrary complexity [30,31].
Fig. 1. Fuzzy inference system.

Fuzzy logic provides advantages over ANNs in that it can better
handle noisy and distorted multivariate data. Another advantage
of fuzzy modeling lies in the training phase where it is possi-
ble to establish rules even in the absence of data relying instead
on expert knowledge to constitute the rule base. Importantly, the
resultant fuzzy model and its rules can be more easily interpreted
compared with ANNs [32]. Fuzzy models describe input–output
relationships by fuzzy if-then rules (fuzzy propositions). They make
use of fuzzy sets and approximate reasoning to find an overall
‘good enough’ solution to a particular problem domain without
using detailed first-principle knowledge of that domain. Fuzzy rules
may  be formulated on the basis of expert knowledge of the sys-
tem [33]. The Mamdani scheme is a type of fuzzy relational model
where each rule is represented by an IF–THEN relationship. It is
also called a linguistic model because of both the antecedent and
the consequent are fuzzy propositions [34]. The model structure
is manually developed and the final model is neither trained nor
optimized. The output from a Mamdani model is a fuzzy member-
ship function based on the created rules. Since this approach is not
exclusively reliant on a data set, with sufficient expertise on the sys-
tem involved, a generalized model for effective future predictions
can be obtained [35].

Mamdani models structure following rule base (where X, Y and
Z are linguistic variables).

Ri: if X is Ai and Y is Bi,. . . then Z is Ci,. . .,  i = 1. . .n
Given the input fact (x0, y0), the goal is to determine the output

“Z is C”.
Each fuzzy expert system model is developed through three

stages, i.e., fuzzification, inference engine and defuzzification as
depicted in Fig. 1.

2. Experimental

2.1. Chemicals

All reagents used were of analytical grade. Lead (II) acetate
(Pb(CH3COO)2, 99% purity), with a molecular weight of 379.34 and
sodium dodecylsulfate (SDS) as a anionic surfactant (>99% purity),
with a molecular weight of 288.38 were obtained from Merck com-
pany. Experimentally, the (critical micelle concentration) CMC is
usually was  found by plotting a graph of electric conductivity versus
concentration. An abrupt change of slope marks the CMC. Its plot
against the concentration of surfactant yields two straight lines
from whose intersection the CMC  is obtained [3].  The CMC  of SDS
was determined 2.34 g/L using conductivity meter method. Dis-
tilled water was used in all of the experiments. HCl and NaOH, were
used for pH adjustment, both having concentration of 1N.

2.2. Membrane

The experimental spiral-wound ultrafiltration regenerated cel-

lulose membrane with an effective area of 1.83 m2 was supplied by
Amicon (PL series, Millipore) and used without further treatment.
The membrane cut-off was  10 kDa.
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the center points do not influence the usual effect estimates in the
design.

Table 1
The levels of variables chosen for the trials.

2+
ig. 2. Schematic of MEUF process: (1) peristaltic pump, (2) feed reservoir, (3) m
ermeate stream reservoir, (8) computer in which data of permeate weight are reg

.3. Experimental setup and micellar-enhanced ultrafiltration
xperiments

All UF experiments were carried out in a batch stirred cell (Ami-
on 8200, Millipore), with an initial volume of 100 mL.  The cell was
tirred with a magnetic stirrer at 300 rpm. In the preparation of
eed solutions, lead acetate and surfactant (SDS) were mixed at the
equired concentrations according run number. The applied pres-
ure was adjusted by pressurized air at 60 kPa, and the operating
emperature was 25 ± 2 ◦C. A peristaltic pump Model XXX80 (Mil-
ipore Co.) with constant flow and 50 kPa inlet pressure was  used
o provide cross-flow ultrafiltration. The TMP  of cross-flow UF was
valuated by two pressure gauges before inlet and at the outlet of
ystem, respectively.

The used membrane was immediately flushed at room temper-
ture for 15 min  at 60 kPa using distilled water, 0.01 M HCl, 0.1 M
aOH, 1% NaCl. After each step in the cleaning procedure, distilled
ater was circulated at 60 kPa and room temperature, until the pH

f permeate became neutral. When maintained as described above,
he membrane exhibited a constant initial permeate flux after use.
ig. 2 shows a schematic diagram of the experimental spiral-wound
embrane system set-up assembled.
The spiral-wound UF device was operated in continuous and

ross-flow mode which has a much higher flux and much more
ffective membrane area than the conventional batch cell system.
n this study, the permeation flux for the cross flow UF operation is
efined as

p = Q

A �t
(1)

here Jp is the permeation flux (mL/(m2 s)), Q is the feed volume
mL), A is the area of membrane (m2) and �t  is time interval of

EUF process.
The effectiveness of MEUF process was represented by percent-

ge rejection of Pb2+ ions and surfactants as following:

 = 1 − Cp

Cf
(2)

here Cp and Cf denote the concentrations of solutes in permeate
nd feed streams, respectively. TMP  is the transmembrane pressure
hich can be calculated by the following equation:

MP  = Pi + Po

2
− Pp (3)

here Pi and Po are inlet and outlet pressures, respectively, and Pp

s permeate pressure.

.4. Measurement and analysis

The permeate flux was measured continuously and gravimetri-

ally using a digital balance laboratory scale that was connected to

 computer and monitored via one by flow program. Conductivity
nd pH were measured with a Crison microCM 2200 conductivity
eter and a Shimadzu 2000 pH meter analyzer, respectively. The
c stirrer, (4) monometer, (5) spiral-wound ultrafiltration module, (6) balance, (7)
, (9) retentate stream.

Pb2+ ion concentration in permeate was analyzed by atomic absorp-
tion spectrometry (GBC, 908AA Model) at 228.8 nm.  The idealized
calibration or standard curve of atomic absorption spectrometry is
stated by Beer’s law that the absorbance of an absorbing analyte is
proportional to its concentration; air–50% oxygen–acetylene flame
source was  used for Pb2+ concentration measurement. The rule of
thumb is that a minimum of five standards and a blank should be
prepared in order to have sufficient information to fit the standard
curve appropriately. If the sample concentration is too high to per-
mit  accurate analysis in linearity response range, there are three
alternatives that may  help bring the absorbance into the optimum
working range: (1) sample dilution, (2) using an alternative wave-
length having a lower absorptivity, (3) reducing the path length by
rotating the burner hand.

3. Experimental design

The number of experiments (N) that is required for development
of BBD is defined as:

N = 2k(k − 1) + Co (4)

where k is the number of factors and C0 is the number of central
points.

The significant variables like SDS feed concentration, surfactant
to metal molar ratio (S/M ratio) and solution pH were chosen as the
critical variables and designated as X1, X2 and X3, respectively. The
low, middle, and high levels of each variable were designated as −,
0, and +, respectively, and given in Table 1.

As seen in Table 2, the design had only 16 experimental runs,
instead of having 27 experimental points if the run was done in
33 complete factorial design, as similarly reported by others. The
response surface design developed is based on The Box–Behnken
design (BBD) with all combinations of the factors at two levels
(high, +1 and low, −1 levels) and the center points (coded level
0), which are the midpoints between the high and low levels, is
repeated forth. The actual design of experiments is given in Table 2.
Center points used to an estimate of pure error between experi-
mental data and fuzzy model predicted data. Another important
reason for adding the replicate runs at the design center is that
SDS feed concentration (mM) (X1) Molar ratio (SDS/Pb ) (X2) pH (X3)

2(−)  5(−)  2(−)
4(0)  10(0) 7(0)
6(+) 15(+) 12(+)
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Table 2
The Box–Behnken design (BBD) for lead removal by MEUF process.

Std Run A:CSDS B:S/M C:pH R1: rejection (R%) R2: permeate flux
(mL/(m2 s))

1 13 2 5 7 77.78 8.21
2 10  6 5 7 99.41 7.45
3  8 2 15 7 77.35 7.71
4  12 6 15 7 90.89 5.56
5  7 2 10 2 55.96 9.02
6  9 6 10 2 56.64 8
7 15 2 10 12 49.12 8.48
8 16 6  10 12 73.61 7.3
9 4  4 5 2 37.27 7.35

10  11 4 15 2 57.38 7.38
11  3 4 5 12 61.93 7.91
12  6 4 15 12 52.86 5.89
13 1 4 10 7 91.2 8.24
14  5 4 10 7 86.11 8.56

4
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15 14 4 10 7 94.34 7.51
16  2 4 10 7 89.19 8.27

. Results and discussion

.1. Effect of process variables on rejection rate and permeation
ux

The rejection factor increased with increase of the feed SDS con-
entration while keeping the molar ratio and solution pH at the
iddle level. No significant enhancements of rejection factor can

e seen at a higher SDS concentration because of efficient binding
ites do not increase anymore. Furthermore, the permeation flux
ecreases with the increase of the SDS concentration in mentioned
perating conditions.

The Pb2+ rejection factor increases gradually with an increase
n solution pH at a fixed SDS concentration and molar ratio. This is
ue to the competition of H+ trapped on the micelle surface with
etal ions. At low pH (acidic condition), there are more H+ com-

ared with basic condition (pH > 10). Consequently, the effective
inding sites are occupied by hydrogen ions. But in solutions with
igh pH there are less ions with the same charge, as a result Pb2+

ejection increased. In addition, the results show that shows that
he increasing the solution pH has very little effect on permeation
uxes. For SDS which has CMC  of 8.2 mM,  the critical S/M ratio is

 for obtaining metal removal efficiency of greater than 99% for
ost of the metals investigated. The gained results show adequate

onsistency with literature [36].

The lead ions presented a high retention at experienced levels

hat SDS concentrations were changed, even at those surfactant
oncentrations far below the CMC. This is a consequence of the for-
ation of a SDS–Pb2+ precipitate: after the addition of lead ions,

Fig. 4. Graphical representation of the fuzzy model structur
Fig. 3. Membership function of input variables (X: CSDS ∈ [1,7], S/M ∈ [4,16],
pH  ∈ [1,13]) used in this study.

the SDS solution immediately turns a brown-black colour, indicat-
ing an association of Pb2+ with SDS [24]. Theoretically, there are
no micelles formed at surfactant concentrations below the CMC
and therefore, there is not any metal ion rejection, but according
to our results, the Pb2+ rejection was  observed when the SDS con-
centrations are below the CMC. This behavior can be demonstrated
due to the concentration polarization effect which hinders the ions
permeation through the membrane pores [17].

4.2. Development of fuzzy model

From Fig. 3, three inputs to the fuzzy models including: CSDS,
S/M and pH. The ranges of these inputs are from [1, 7], [4, 16] and
[1, 13] respectively. For the input variables (CSDS, S/M, pH) three
membership functions L, M and H are used. They are L, low, M,
medium and H, high.

For each input variables, triangle membership functions (MFs)
are requested to use. Because all of the MFs  are triangle shapes,
so we can express these MFs  as follows: The triangular curve is a
function of vector x, and depends on three scalar parameters a, b,
and c, as given by

f  (x, a, b, c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 x ≤ a

or

x ≥ c

x − a

b − a
a ≤ x ≤ b

c − x

c − b
b ≤ x ≤ c

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5)
or, more compactly, as

f (x, a, b, c) = max(min
(

x − a

b − a
,

c − x

c − b

)
, 0) (6)

e (a) permeate flux output (b) rejection factor output.



B. Rahmanian et al. / Journal of Hazardous Materials 192 (2011) 585– 592 589

F
u

p

T
i
c
m
a
i
t
a
F
f

a
s

Table 3
ARE, AARE and SD for permeate flux and rejection which modeled by fuzzy.

Response variable Method % ARE %AARE %SD
ig. 5. Membership function of output variables (permeate output, rejection output)
sed in this study.

The parameters a, c locate the “feet” of the triangle and the
arameter b locates the “peak” [37].

In practice, fuzzy modeling is applied using local inferences.
hat means each rule would be inferred and the results of the
nferences of individual rules then would be aggregated. The most
ommon inference methods including: the max-min method, the
ax-product method and the sum-product method, where the

ggregation operator is denoted by either max  or sum, and the fuzzy
mplication operator is denoted by either min  or prod. Especially
he max–min calculus of fuzzy relations offers a computation-
lly nice and expressive setting for constraint propagation [34,38].
inally, a defuzzification method is needed to obtain a crisp output

rom the aggregated fuzzy result.

Popular defuzzification methods include maximum matching
nd centroid defuzzification. Hence in this study, the fuzzy rea-
oning results of outputs are gained by aggregation operation of

Fig. 6. Fuzzy model rules

Fig. 7. Fuzzy model rules fo
Permeate flux Fuzzy 0.371335 2.554286 2.102598
Rejection (R%) Fuzzy 0.9349388 3.757003 1.998143

fuzzy sets of inputs and are designed fuzzy rules, where max-min
aggregation method and centroid defuzzification method are used.
Where fuzzy inference system for permeate flux and rejection fac-
tor output is shown in Fig. 4.

From Fig. 5 outputs fuzzy inference system including: perme-
ate flux and rejection factor. The ranges of these outputs are from
[5.5, 9.5] and [35,100] respectively. For the output variables seven
membership functions VL, L, MO,  M,  I, H and VH are used. They are
VL, very low, L, low, MO,  moderate, M,  medium, I, increase, H, high
and VH, very high as shown in Fig. 5.

The fuzzy model rule surfaces show the relationship between
S/M, pH, CSDS, permeate flux; rejection is given in Figs. 6 and 7.

The results of the fuzzy modeling for permeate flux; rejec-
tion percentages are shown in Figs. 8 and 9 for each trials of
Box–Behnken design respectively. The result reveals that there is a
high degree of agreement between the experimental data and the
dynamic simulation of this work.

Fig. 10 shows the prediction of extraction percentage of the
present model as compared with the experimental data for Pb2+
rejection and permeation flux of MEUF process and deviation is
found within ±10%.

The accuracy and ability of fuzzy model for predicting MEUF
performance was  checked with experimental data in Table 3 which

 for permeate flux.

r rejection factor (R%).
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Fig. 8. Comparison between the fuzzy modeling of this work and experimental data for the permeate flux (Jp).

 this w
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Fig. 9. Comparison between the fuzzy modeling of

ndicated that the results from proposed fuzzy model are in better
greement with experimental data. Table 3 reveals average relative
rror (ARE), absolute average relative error (AARE) and standard
eviation (SD) for Table 3 gives ARE, AARE and SD for results of
roposed fuzzy model. ARE, AARE and SD are defined as below:

RE = 1
N

N∑
i=1

(
Xexperimental(i) − Xcalculated(i)

Xexperimental(i)

)
(7)
ARE = 1
N

N∑
i=1

(∣∣∣∣Xexperimental(i) − Xcalculated(i)

Xexperimental(i)

∣∣∣∣
)

(8)

able 4
omparison between the current work and another simulation method.

Type of process Method Responses variable

Milk ultrafltration ANN Permeate flux and
Copper removal by MEUF RSM Rejection coefficie
Cross  flow milk ultrafiltration Fuzzy Permeate flux and
Zinc  removal by MEUF ANN Permeate flux and
Current work Fuzzy Permeate flux and
ork and experimental data for the rejection factor.

SD =

√√√√ 1
N − 1

N∑
i=1

(∣∣∣∣Xexperimental(i) − Xcalculated(i)

Xexperimental(i)

∣∣∣∣ − AARE

)2

(9)

Table 4 summarizes a comparison between the present work
and the other methods given in the published earlier articles for
evaluation membrane performance. However, in most of them, it

can be said that the empirical models developed were reasonably
accurate. In the present work, a fuzzy logic (FL) models has been
used, since it was  effective in finding complex non-linear relation-
ships for this membrane separation process.

s Statistical index Ref.

 the solutes rejection Average errors <1% [39]
nt R2 = 0.79 [40]

 the components rejection – [41]
 the rejection rate R2 > 0.92 [42]
 the rejection rate R2 > 0.91
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Fig. 10. Comparison of measured and predicted data fo

. Conclusions

In the present investigation, a fuzzy logic based model was
eveloped to predict and modeling of lead removal and permeation
ux in separation processes using micellar-enhanced ultrafiltra-
ion. The Box–Behnken experimental design method investigates
he effect of parameters such as surfactant concentration, solution
H and surfactant to metal concentration ratio (S/M) on MEUF per-
ormance. The simulation results reveal that the output variables
f MEUF performance could be predicted with a high degree of
ccuracy. Predicting the performance of a MEUF separation pro-
ess, prior to its ultrafiltration experiment, was introduced as the
ost prominent feature of this study. This can offer an intelligent
ethod for evaluation of MEUF presentation instead of try and error
ethod, which is both time and cost consuming.
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